Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1037120170350030186
The World Journal of Men¡Çs Health
2017 Volume.35 No. 3 p.186 ~ p.195
Effects of Next-Generation Low-Energy Extracorporeal Shockwave Therapy on Erectile Dysfunction in an Animal Model of Diabetes
Jeong Hyun-Cheol

Jeon Seung-Hwan
Qun Zhu Guan
Kim Kang-Sup
Choi Sae-Woong
Bashraheel Fahad
Bae Woong-Jin
Kim Su-Jin
Cho Hyuk-Jin
Ha U-Syn
Hong Sung-Hoo
Lee Ji-Youl
Moon Du-Geon
Kim Sae-Woong
Abstract
Purpose: Gene therapy, stem cell therapy, and low-energy extracorporeal shockwave therapy (ESWT) have been investigated as treatments for refractory erectile dysfunction (ED), but inconclusive evidence has been obtained. We investigated the effect of a next-generation electromagnetic cylinder ESWT device on an animal model of ED.

Materials and Methods
Diabetes mellitus (DM)-induced rats were divided into 3 groups: group 1, control; group 2, DM; and group 3, DM+ESWT. Rats were treated with ESWT 3 times a week for 2 weeks. After the treatment course, intracavernous pressure was measured and the corpus cavernosum and cavernous nerve were evaluated.

Results: In the DM group, all parameters predicted to be significantly lower in the ED model had statistically significantly decreased (p<0.01). As a measurement of erectile function, intracavernous pressure was evaluated. The DM+ESWT group exhibited significantly restored erectile function compared to the DM group (p<0.05). Moreover, ESWT treatment restored smooth muscle content, as assessed by Masson's trichrome staining (p<0.05). Finally, corporal tissue and the dorsal nerve were evaluated by immunohistochemistry, Western blotting, and ELISA. After ESWT treatment, vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), platelet endothelial cell adhesion molecule-1, cyclic guanosine monophosphate, and neuronal nitric oxide synthase (nNOS) expression levels were restored to levels in the DM group (p<0.05).

Conclusions: Electromagnetic cylinder ESWT device resulted in increased VEGF, nNOS, and eNOS expression; reduced smooth muscle atrophy; and increased endothelial cell regeneration in a DM-associated ED model. Our data suggest that safe and effective application could be possible in future clinical studies.
KEYWORD
Animals, Diabetes mellitus, Erectile dysfunction, Vascular endothelial growth factor
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed ´ëÇÑÀÇÇÐȸ ȸ¿ø